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Based on a previous linear theory (van Duin & Janssen 1992), turbulent air flow over 
a surface gravity wave of finite amplitude is studied analytically by the methods of 
matched asymptotic expansions and multiple-scale analysis. In particular, an initial- 
value problem for weakly nonlinear waves is solved, where the initial conditions are 
prescribed by a single Stokes wave, displacing the water surface. The water is inviscid 
and incompressible, and there is no mean shear current. Wave-wave interactions are 
not taken into account. The validity of the theory is restricted to slow waves and 
small drag coefficient. 

We investigate in detail the change of the mean air flow with the evolution of the 
wave, with a prescribed order of magnitude of the initial wave slope. The rate of 
change of this flow is fully determined by an evolution equation for the wave slope, 
which is obtained from the continuity condition for the normal stress at the air-water 
interface. This equation also determines the amplitude-dependent rate of growth or 
damping of the wave, for which a closed-form expression is derived. It turns out that 
nonlinear effects reduce the rate of energy transfer from the mean air flow to the 
growing wave, which implies that nonlinearity has a stabilizing effect. 

For sufficienty large time scales, the slope of the growing wave becomes so large 
that the original evolution equation, which is approximately a Landau equation, 
ceases to be valid. For such relatively large wave slope, an alternative evolution 
equation is derived, which presumably describes the further evolution of the wave 
until the occurrence of wave breaking. The relative effects of nonlinearity, which 
can be characterized by a single parameter, increase with increasing wave slope and 
decreasing wave frequency. 

1. Introduction 
In 1957 Miles published his classical theory on the generation of surface gravity 

waves by wind. This theory adequately describes various observed phenomena, and 
is rather successful in predicting, for instance, the rate at which the generated wave 
grows. It was readily recognized, however, that this theory is an oversimplification 
of reality. The effect of turbulence, for instance, is artificially taken into account by 
the introduction of a logarithmic wind profile. The theory is inviscid, and the direct 
effects of the turbulence on the wave motions are ignored. Viscous stresses should be 
incorporated as well, but these are negligible for the gravity-wave regime (Benjamin 
1959; Miles 1959). Finally, it is noted that the theory is linear. Thus, a possible 
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change of the wind profile with the evolution of the wave is not taken into account, 
although this may be important (Fabrikant 1976; Janssen 1982). 

Subsequent studies centred on a more realistic modelling of turbulent air flow over 
a surface gravity wave. This started with the numerical work of Davis (1972, 1974), 
Townsend (1972), Chalikov (1976, 1978) and Gent & Taylor (1976). Air turbulence 
was described by an eddy viscosity model. Results of these, and more recent, theories 
(with turbulence models of varying complexity) were, however, disappointing in that 
they still showed a substantial disagreement with observed growth rates for both 
high- and low-frequency waves. In fact, the agreement between Miles’ theory and 
observations is better, which is partially explained in van Duin & Janssen (1992, 
hereinafter referred to as VDJ). In addition, the results of the growth rates of the 
generated waves depend on the model of air turbulence, which shows that the problem 
of proper turbulence modelling is of crucial importance. This seems to be emphasized 
by more recent studies, see e.g. Al-Zanaidi & Hui (1984), VDJ, Belcher & Hunt (1993) 
and Burgers & Makin (1993). 

Analytical studies, which also include the direct effects of turbulence, are given by 
Knight (1977), Jacobs (1987), VDJ, Belcher & Hunt (1993) and Belcher, Harris & 
Street (1994). According to Miles (1993) these studies have in common that they 
neglect the energy transfer associated with the phase shift across the critical layer (i.e. 
the layer where the phase velocity of the wave matches the mean air flow), which is 
essential in the classical Miles theory. As noted by Belcher et al. (1994), however, 
this so-called classical Miles mechanism, which is an inviscid instability mechanism, 
cannot be effective because of the dominant effects of the turbulent stresses in the 
critical layer. This is confirmed by numerical studies, which show that the wave stress 
varies only gradually with height in this layer, (e.g. Townsend 1972), in contrast with 
the Miles theory, which predicts a discontinuity due to the jump in the phase shift. 
The incorporation of viscosity does not smooth out this discontinuity sufficiently, 
cf. the solution of the Orr-Sommerfeld equation for flow at large Reynolds number 
(Drazin & Reid 1981). 

In the present study, we are concerned with the effect of nonlinearity on the 
generation of surface gravity waves by turbulent air flow. Extending a previous linear 
theory (VDJ) on this subject, this effect is studied analytically by the methods of 
matched asymptotic expansions and multiple-scale analysis, applied to a problem 
with a three-layer structure. We investigate the change of the wind profile with the 
evolution of the wave. The rate of growth or damping of this wave is determined by 
an evolution equation for the wave slope, which also determines the rate of change 
of the wind profile. The validity of the analysis is restricted to slow waves and 
small drag coefficient. (Part of this paper was presented at the Air-Sea Interface 
Symposium in Marseilles (1993) and appears in concise form in the proceedings (van 
Duin 1996)) 

To describe the interaction of the turbulence with the wave, we introduce an 
eddy viscosity model, applied throughout the flow. Similar turbulence models were 
introduced by e.g. Gent & Taylor (1976), Jacobs (1987), Makin (1989), VDJ and 
Burgers & Makin (1993). According to Belcher & Hunt (1993), however, such models 
lead to an incorrect description of the wave-induced Reynolds stresses in the outer 
layer. Based on results of rapid-distortion theory (Britter, Hunt & Richards 1981), 
these authors introduce a so-called truncated mixing-length model to describe the 
small-scale turbulence over the wave. This implies the use of a mixing-length model 
in a layer close to the water surface, while in the outer layer (away from this surface) 
the Reynolds-stress gradients are neglected. 
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Generalization of the Belcher-Hunt model to a nonlinear model may not be 
straightforward. In particular, the use of rapid-distortion theory implies different 
turbulence closure schemes for the averaged and perturbation flows, which are not 
without their own problems. Apart from this, the use of rapid-distortion models 
awaits further investigation. In the present paper, we therefore maintain the 'classical' 
eddy viscosity model, which also allows comparison with previous nonlinear studies 
to test the theory. 

In 92 we start from the full Reynolds equations for incompressible air flow, supplied 
with the proper continuity conditions at the air-water interface. Averaging the 
equation for horizontal momentum over the dominant wavelength, the wave stress 
is related to the modified mean air flow. The water is supposed to be inviscid and 
incompressible, and there is no basic current. Its surface is displaced by a single 
Stokes wave, with a time-dependent amplitude. It is shown that the initial wave slope 
should be of the order of E ,  where the small parameter E corresponds to the square 
root of the drag coefficient at the reference height for the wind speed. In the limit of 
vanishing wave slope, the air flow profile is logarithmic throughout the flow domain. 
We also briefly discuss the three-layer structure of the problem. These layers are 
analysed in detail in the 943 to 5. 

In $6 the results obtained are applied to derive the evolution equation for the wave 
slope. For sufficiently small wave slope, which implies sufficiently small time scales in 
case of a growing wave, this equation is approximately a Landau equation, which has 
an exact solution. By introduction of a suitable scale transformation, we derive an 
alternative evolution equation, which is valid for larger wave slope and larger time 
scales than the original Landau equation. Based on these results, we derive in 47 
closed-form expressions for the growth-rate parameter, modifed by the wave slope, 
and the drag coefficient at the reference height for the (varying) wind speed. 

Finally, in $8 the results are discussed. 

2. Formulation of the problem 
2.1. The air 

The orthogonal frame of reference ( x , z )  moves with the phase velocity of the wave, 
measured in the inertial laboratory frame. The x-axis is aligned with the horizontal, 
unidirectional mean flow; the z-axis points vertically upwards. The air-water interface, 
when at rest, is located at z = 0. The magnitude of the mean flow depends on height. 
The air is incompressible, and has a constant density p. The effect of surface tension 
is neglected. 

The combined effects of molecular viscosity and turbulence are taken into account 
by assuming that the kinematic viscosity v is of the form 

v = v o + v , ,  (2.1) 
where vo is the constant molecular viscosity, and v, is the eddy viscosity, which is 
time-dependent because of the moving water surface. 

In the limit of vanishing wave amplitude the mean flow in the laboratory frame is 
of the form 

U ,  

K (3 7 

u = U&) = - log 

valid for sufficiently large z ,  where u, is the friction velocity, K is the von Karman 
constant, and zo is the roughness length. 
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Close to the water surface the velocity profile is assumed to be of the form 
U t Z  

Ic VO 
UO(Z) = k{log(l + Icz+) + BF(Z+)} , z+ = - , 

where B is a constant and F is some smooth function, with F(z+)  = 1 + O(l/z+) as 
z+ -+ 00. The absence of a mean current in the water implies the condition F(0)  = 0. 
For the constant B we take 

(2.4) 
u.zo 

VO 
B = -lOg(KR), R = - , 

where R is the roughness Reynolds number. For z+ >> 1 the velocity profile (2.3) is 
then of the form (2.2). 

We introduce dimensionless variables by defining a lengthscale L = l /k,  where k is 
the horizontal wavenumber of the dominant wave, and a velocity scale 

I/ = Uo(aL), (2.5) 

where the constant a is a free parameter of the order of unity. 
The coordinates and the water displacement are scaled by L, the velocities by V ,  

the time by L / V ,  the pressure by pV2, and the viscosity by Lu,. Furthermore, we 
introduce the parameter 

which can be regarded as small because it corresponds to the square root of the drag 
coefficient at the reference height. 

In the moving frame of reference, the equations of motion and the continuity 
equation are of the form 

& = u* / I / ,  (2.6) 

Du - - _  
Dt 

ux + u, = 0. 
Here, D/Dt is the material derivative, the variables in suffix position denote partial 
differentiation, u and u are the horizontal and the vertical velocity, respectively, and 
c = c( t )  is the phase speed of the slowly modulated wave. 

By introduction of the stream function 4 according to 

(2.9) 

?A = -4n = 4 x 9  (2.10) 

one obtains the single equation 

az a 2 2  ax2 a ' }  [ a Z x  { - d ) Z  4- dlx - v2d) = E 4 - 4 V 4 X Z )  + (-E - "> { v (g - 2) 4}] 3 

(2.11) 

a 

where V2 is the Laplacian. 

outer layer z = O( 1) the decomposition 
To investigate the nonlinear interactions with the mean flow, we introduce in the 

u = U + R ,  v = i J p = p + p ,  v = I c z + v " .  (2.12) 

Here, U is the x-averaged horizontal velocity (the mean flsw), p is the (x-averaged) 
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modified pressure, KZ is the mean eddy viscosity, and the tilde denotes the perturbation 
part. The mean flow is written as 

u = -c + uo + u1, (2.13) 

where UO is the dimensionless form of the velocity profile (2.2), with 

K Z U O Z  = &, (2.14) 

Averaging the horizontal momentum equation (2.7) over a wavelength, and making 
and U1 is the modified mean flow, induced by nonlinear effects. 

use of (2.12)-(2.14), one obtains the equation 

a 
U1, = j$-(ac) + ElCZU1, + s(a(5, +Ex))},  (2.15) 

i.e. the equation for the modified mean flow. The angle brackets denote horizontal 
averaging. 

In the moving frame of reference, the only time scales are those for damping or 
growth of the wave. In linear theory, the typical time scale proves to be 1/ss (VDJ), 
where s is the ratio of the air density to the water density. Thus, the averaged 
quantities depend on the coordinate z and the 'slow' time T = sst. Since s is a very 
small parameter, the term with the local time derivative in (2.15) may be omitted. 
Based on a multiple-scale analysis, and making use of (2.14), the equation for the 
mean flow then integrates to (van Duin 1994) 

- (aa) + ElCZU, + &(a(az +a,)) = s2. (2.16) 

The amplitude of the water wave is taken to be much larger than the surface 
roughness length. For the reference frame under consideration, this implies that in 
the viscous sublayer no balance between the dominant nonlinear terms in equation 
(2.11) can be obtained. For this reason, we introduce the wave-following coordinate 
system 

tl = t ,  x1 = x, y = 2 - qw(xl,tl), (2.17) 
which moves with the surface of the water wave. This curvilinear coordinate system 
does accommodate the required nonlinear balance because the eddy viscosity now 
depends on the coordinate y only ($3). 

It will be convenient to rewrite the stream function 4 according to 

4(x,z, t )  = Y ( X l ,  y ,  t l) .  (2.18) 

In deriving the equation for Y ,  we then have to apply the transformation rules 

In the resulting equation, the variables x1  and tl will again be replaced by x and t ,  
respectively. 

2.2. The water 
It is assumed that the flow is inviscid, incompressible (with a constant density), and 
irrotational. The depth is much larger than the wavelength, and in the laboratory 
frame no mean current is observed. 

The water surface is displaced by a single Stokes wave with a slope of the order of 
6, where 6 should be related to the small perturbation parameter E ,  defined by (2.6). 
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In van Duin (1994) it is shown that 6 = E is the appropriate scaling. Then the water 
displacement is of the form 

qw = E ~ I  + E 2 YZ + O ( E ~ ) ,  (yl l ,q2)  = (Ae'" + c.c.,A2e2ix + c.c.), (2.20) 

where C.C. denotes the complex conjugate. Based on the linear theory (VDJ) we find 
that A depends on the 'slow' times 

Tn = s f t ,  n = 1,2,3, ' . . . (2.21) 

(2.22) 

The phase velocity is of the form 

c = co(i + 2 2  1 ~2 1 +0(&4)), c; = c; - s(i - co)2, 

where c, = (gL/V2)'/ '  is the phase velocity of the linear wave in the limit s -+ 0. The 
expression for the phase velocity is correct to O(SE), see van Duin (1994). 

The hydrodynamic pressure at the surface elevation, denoted by p, ,  is obtained by 
making use of (2.20)-(2.22) and the kinematic boundary condition. Then we obtain 

I 'A ix 2 sp,  = E {(c; - c;)AeiX + c.c.} + E~ 2isco-e + (co - ci)A2e2iX + C.C. { aT1 

(2.23) I 'A ix +e3 2isco-e + C.C. + p3 + higher harmonics + O ( E ~ ) ,  

where j j 3  determines the modified pressure, which will prove to be O(e3) .  

elevation. This is of the form 

{ aT2 

We also need the expression for the horizontal water velocity uw at the surface 

u, = -Ywy = -CO + E(coAeiX + c.c.} + E2{cOA2e2iX + c.c.} + O ( E ~ ) .  (2.24) 

At the interface between air and water we require continuity of the tangential 
velocity (no-slip condition), and the normal stress. In addition, we have to require 
continuity of the normal velocity at the interface. Making use of (2.10) and (2.17)- 
(2.19) the kinematic boundary condition reads Yx = qwt, which implies that qw = 0, 
in accordance with (2.20). 

2.3. The three-layer structure 
As noted in VDJ, three layers (an inner layer, an outer layer and an intermediate 
layer) are needed to obtain valid asymptotic expansions. 

For the inner layer, we introduce the scale transformation 

5 = Y/E1, (2.25) 

where 61 is the dimensionless molecular viscosity. 
In the outer layer, z = O( l), the coordinate z is used initially, but once the solution 

has been determined, it is rewritten in terms of y in order to accommodate matching 
with the solution in the intermediate layer. 

For the intermediate layer, we introduce the scale transformation 

Y = Y/E, (2.26) 

where E is defined by (2.6). From the relation 

(2.27) 

derived from (2.2), (2.4), (2.5) and (2.6), we find that E~ << E .  Thus, the intermediate 

a El = - e - ~ l ~  
R '  
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layer is much thicker than the inner layer. Matching of the outer and inner solutions 
can only be carried out via the solution in the intermediate layer; cf. VDJ. 

In fact, there is a fourth layer, namely the critical layer. This is located at the top of 
the inner layer and at the bottom of the intermediate layer. It turns out, however, that 
the inner-layer solution can be matched directly with the intermediate-layer solution. 
Apparently, the critical layer is not important in this respect. The reason for this is 
that the width and the height of this layer are the same, which implies that viscous 
effects are dominant. This also applies to the case when the critical layer lies within 
a sublayer of negligible profile curvature, see e.g. Miles (1962) and Akylas (1982). 

3. The inner layer 
In the transformation (2.25) for the inner layer, the parameter ~1 is related to the 

parameter F according to (2.27). Thus, the parameter c1 is transcendentally small with 
respect to E. This admits an inner-layer expansion of the form 

where TST denotes a transcendentally small term. 

depends on i only. By application of (2.17)-(2.19) we obtain 
The equation for Yp is obtained from equation (2.11) with v = i l v l  where v1 

where K is an integration constant, and v1 is still to be determined. 
Introducing the decomposition Yyg = Y p  + q p ,  both the x-averaged part Y p  and 

the pertubation part 4, satisfy equation (3.2). Taking K = 0, we obtain the decoupled 
equations 

L1 Yp = 0, (3.3) 

L#p = 0. 
Based on (2.3) the mean flow is assumed to be of the form 

(3.4) 

where the ‘constant’ Q = Q(t)  determines the modified mean flow at lowest order. 
Equation (3.3) implies that the coefficient v1  in (3.2) is determined from 

(3.6) 

The solution of equation (3.4) is written as 

(3.7) 
!P/y = & Y ,  +&~Y2+(&310g&)Y~+&3Y~+O(&4 log&) ,  

y n  = A d  + Bn{(l f K[)lOg(l + K i )  + KB F(u)du}, BI = 0, .1! 
with A ,  = A,(x , t )  and B, = B,(x,t). Matching (3.7) with the perturbation part of 
the intermediate-layer solution (5. l), and applying the no-slip condition at the water 
surface, these coefficients are uniquely determined. 

The intermediate expansion of (3.5) is obtained by writing the asymptotic behaviour 
as i -+ 00 in terms of the intermediate-layer variable (2.26), where use is also made 



294 C. A. van Duin 

of (2.25) and (2.27). This expansion is determined from the basic expression 
K 

& 
lOg(1 + K [ )  + B F ( [ )  - - + logs + lOg(y/a) + TST. (3.8) 

It is important to note that (3.8) implies that the intermediate expansion of (3.5) is 
independent of the term BF([ ) .  This implies that the mean flow in the intermediate 
and outer layers is independent of the flow structure in the inner layer. It is readily 
shown that this also applies to the perturbation part of the flow. On the other hand, 
the constant B in (3.6) and (3.7) should be of the order of unity. In view of (2.4) this 
excludes very rough flow. 

4. The outer layer 
In the outer layer, the stream function 4 is written as 

4 0 U L  = &z, t )  + 8(4 z ,  t ) ,  (4.1) 

Substituting (4.1) into equation (2.11), with v = K ( Z  - yw), we obtain the equation 
where the overbar denotes x-averaging for fixed z .  

The decomposition (4.1) is expanded according to 

4 = go + dl + c202 + 0 ( & 3 ) ,  

6 = &dl + &202 + &3e3 + o(&, (4.3) 

where 0, = &(z,  t )  and 8, = &(x, z ,  t ) ,  with do = 0. 

obtain the following hierarchy of averaged equations : 
Substituting (4.1) and (4.3) into equation (2.16), with v" determined by (2.20), we 

- 
0022 = 0, (4.4) 

(4.5) 

(4.6) 

(e lx%2> - KZ&Z = 1, 

(01x022 + 02x012) - KZ0222 - ( w ( Q 1 x x  - 0122)) = 0. 
The equations for the various On, which describe the perturbation part of the flow, 

are determined from equation (4.2). The interaction between the mean flow and the 
perturbations are described by equations (4.4)-(4.6) for the various g,. 

The equation for 01 is a Laplace equation which implies that, at leading order, the 
perturbation flow in the outer layer is irrotational. As a solution we take 

O1 = wAe"-' + C.C., w = 1 - co. (4.7) 
The solutions of equations (4.4) and (4.5) are taken as 

1 1 
60 = -wz, el = --zlogz - rz ,  r = KQ - - (1  + loga), (4.8) 

K K 

where Q is the constant in the modified part of the mean flow (3.5). 
Making use of (4.7) and (4.8) the equation for 82 is obtained, which has a solution 
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(4.9) 
A 0' = - -~~(2z)e '"+ '  + Fzei"-' + F3e'(ix-z) + C.C., 
K 

where Fz and F3 are constants to be determined, and El denotes the exponential 
integral (Abramowitz & Stegun 1964). 

From (4.7) and (4.9) the first bracketed term in equation (4.6) vanishes identically. 
The resulting equation has a solution of the form 

0 2  = YO + qlz - 4w I A2 I J[- &(OK, (4.10) 

where qo and q1 are constants, which determine the modified flow at higher order. 
For the constants Fz and F i  in (4.9) and qo in (4.10) we take 

(4.11) I + l o g 2 ~ )  A,  F3 = ~ w A ' ,  40 = 2~ I A2 1 . 

Then the intermediate expansion of the outer solution reads 

Ji 
yOllt - - rwy - (E' log y - ry - (wAqeix + c.c.) 

(4.12) 

where y is Euler's constant and ~2 and s13 are unknown constants. When the term 
proportional to E~ loge in (4.12) is matched with the inner-layer mean flow, we obtain 

I A A + {;WAY' + -y logy + -(-2 + 2y + log4a)y - K Q A ~  - c12 elx 

- 3w~ 'ye~ ' "  + C.C. + 0(t4 log2 e), 

K K 

I 
Q = - 4 ~  I A' i, (4.13) 

which determines the modified mean flow; cf. (3.5) and (4.8). 
When written in terms of y ,  we obtain for the outer-layer pressure 

ilc + -(y + log 2 ~ )  + ~ K W  I A2 1 1 1 poul + t:(-w?Ae" + c.c.) + E' 2wAe'" [{ ti 

- 3w2A2e2'" + C.C. + O(e') as y --f 0. (4.14) 1 
As will be shown, this matches with the pressure at the water surface. 

5. The intermediate layer 

function 4 is rewritten in the form (2.18), with Y = Y,,, expanded according to 
In the intermediate layer, where the scale transformation (2.26) applies, the stream 

(5.1) 

To derive the equations for the various cp,, we start from equation (2.7), with 

2 Yl,,, = E@* + ( F  loge)@* + r2qz + (63 log e ) q 3  + F 3 q q  + ' . . , 
where q, = @,,(y,t) + g(x,q,t) and go = O,Q1 = 0; cf. (4.12). 

v = m y .  Making use of (2.10), and averaging the resulting equations, we obtain 
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are derived from (2.11). Making use of the 
equations d2cpo/dq2 = 0, d2cp1/dy2 = 0, obtained from matching with (4.12), we find 

The equations for the various 

Lipn = 0 , n = 2,3, (5.3) 

L@4 = 402gqqip2x + W2qlxxx, 
where 

Based on (4.12) the solutions of (5.2) and (5.3) are given by 

cpo = -wq, (5.6) 

1 
cp1 = - -q ,  

K 
(5.7) 

(5.8) 
1 

(p2  = --q log q - rq + (-wAqeix + c.c.), 
K 

A h .  
cp3 = -Qq + (-re + c.c.). 

The solution of equation (5.4) reads (van Duin 1994) 
K 

(5.9) 

A A 
@4 = kwAq2 + -q logy + -(-2 + 2y + 10g4a)q - KQAV 

K K 

2 2ix + 2iA{-1 + 0 3 ( q ) )  eix - 3wA qe + c.c., (5.10) 

[ 
1 

with the solution of the homogeneous part of equation (5.4) given by 
4iw 

0 3  = ihq'/2Kl(ihq1/2), h2 = -__ , Im h < 0 .  
K 

The expression for the pressure gradient p q ,  obtained from (2.8), is easily integrated 
with respect to q, where the integration constant is determined by (4.14). Matching the 
resulting expression with the constant inner-layer pressure, the continuity condition 
for the normal stress at the air-water interface becomes (van Duin 1994) 

Pout + Pw + W4) as Y + 0, (5.11) 

where pw is the pressure at the water surface. 

6. The evolution equation 

normal stress. Thus, matching (4.14) with (2.23), we obtain the equation 
The evolution equation will be derived from the continuity condition (5.11) for the 

dA 
a TI 

2ic0- = 2kwA + + log 2%) + 8xw2 I A2 I 

Equation (6.1) implies a nonlinear frequency shift which is a factor of 1 / ~  larger 
than expected. This strong nonlinearity is a consequence of the fact that the modified 
mean flow in the outer layer is proportional to E ;  cf. (4.3), (4.8) and (4.13). This 
induces the nonlinear term proportional to c2 in (4.14), which is matched with (2.23). 
In the inner layer, on the other hand, the modified mean flow is a factor of O(E)  
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smaller, in view of (3.5). As expressed by (3.8) this change in the order of magnitude 
is an artefact of the logarithmic velocity profile. 

It will be convenient to write 

A = ae”, a =/ A 1, (6.2) 
in order to eliminate dependence on the phase w, Then equation (6.1) reduces to 

where we made use of the definition (2.21), with s denoting the ratio of the air density 
to the water density. At lowest order, this equation is linear and the wave grows or 
decays exponentially on a time scale l/se. 

In order to derive the higher-order evolution equation, which should describe the 
reduction of the rate of growth on a longer time scale due to nonlinear effects, we need 
to determine the equation for dAlaT2, combined with (6.1). To that end, the higher- 
order term in the limit expression (4.14) should be matched with the corresponding 
term with dA/i3T2 in (2.23). It should be noted that it suffices to consider the first 
harmonic only. Thus, in what follows, the mean variables and the higher harmonics 
will be ignored. In addition, we only need to consider the component that is in phase 
with dq,/ax, because only this will contribute to growth or damping of the wave. The 
resulting expression for the reduced outer-layer pressure, which contains the ‘in-phase 
component’ of the first harmonic only, is then of the form (van Duin 1994) 

(pout ) ,  -+ ie2 (21cw + E(-1 + 2w - 2y - 2logcl- 8rc2w I A2 I ) }  AeiX + C.C. + O ( E ~ )  (6.4) 

as y -, 0. 
For the free parameter a in the velocity scale (2.5) we choose 

(6.5) 
to simplify expression (6.4) and the resulting evolution equation. 

Matching the term proportional to E~ in (6.4) with (2.23), applying the chain 
rule d / d t  = ssd/dTl + s ~ ~ a / d T ~ ,  and making use of (6.2) and (6.5), we obtain the 
higher-order evolution equation for the amplitude of the wave. This is of the form 

a = e-11+2r)/2 ~ 0.341 

da SEW 
- = - { ( K  + &)a - 4e1c2a3} + 0(se3). 
at  co 

According to equation (6.6), nonlinearity reduces the growth rate of the wave. 
Furthermore, the conditions for growth or damping of the wave are the same as those 
for the linear equation (6.3). Thus, when the wave grows, (3.5) and (4.13) imply that 
the mean flow decreases with increasing wave amplitude. When the wave is damped, 
on the other hand, the mean flow increases with time. In this respect, the model gives 
a physically correct description of the interaction of the wave and the mean flow. 

When the remainder term in equation (6.6) is omitted, the resulting (or reduced) 
equation is of the Landau-type and has an exact solution (Drazin & Reid 1981). 
Furthermore, this reduced equation has a steady solution 

However, this is not a solution of the complete equation (6.6) because, as shown 
below, for long time scales the remainder term proves to be of the same order of 
magnitude as the lowest-order linear term and the nonlinear term in the reduced 
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equation. From the exact solution of the latter equation it is then readily seen that, 
with the initial condition a = O( 1) at t = 0, the validity of this solution is restricted 

In order to estimate the effect of nonlinearity in the full equation (6.6) for longer 
to t << l/se2. 

time scales, we introduce the transformation 

a=--- p(t) = O( l), 
2(lc&)‘/2 

which induces a balance between the lowest-order linear term and the dominant 
nonlinear terms. For the reduced equation we then obtain 

The next dominant nonlinear term in (6.6), which is proportional to S E ~ U ’ ,  is 
determined by matching at higher order. Then we obtain 

f@L) = 1 - P2 + p4 + O(P6), 

which suggests that f(p) = 1/(1 + p’), valid for p < 1. Thus, we suppose that (6.7) 
transforms equation (6.6) into an equation of the form 

at = = co (&) + O(S&’). 

The transformation (6.7) corresponds to 

where cr is the wave slope, with cr = 2 ~ a .  
We recall that for a wave slope of O(E)  the initial evolution of the wave is described 

by a Landau-type equation. When the above restriction is violated, however, this 
equation ceases to be valid. We also derived an alternative evolution equation of 
the form (6.8), valid for larger wave slope. The remainder term (which depends on 
p as well) is indeed a higher-order correction term because of the condition p < 1. 
Since equation (6.8) is a transformed version of equation (6.6), including higher-order 
terms, it follows that, even for small wave slope, the former equation applies as well, 
where p < 1 implies that the remainder term is negligibly small if E << 1. On the other 
hand, there is again an upper bound on the wave slope because, in view of (6.9), 

o < (y’. (6.10) 

We conclude that for E << 1 the truncated form of equation (6.8) is valid for any 
initial wave slope and governs the evolution of the wave as long as condition (6.10) is 
satisfied. For E > 0.036 the upper bound in (6.10) should be replaced by the threshold 
value oc w 0.3 for wave breaking. 

Based on the evolution equation (6.8) we find that the effect of nonlinearity is 
measured by the single parameter p, with (6.9) defined by 

p = 5 ( E / l c ) - ’ / 2 .  (6.11) 

The parameter p in (6.11) is now expressed in terms of the wave slope and the 
parameter E. Making use of the Charnock (1955) relation, the latter parameter can be 
expressed in terms of the ratio u,/c of the friction velocity to the phase velocity. For 
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FIGURE 1 .  The parameter p (as a measure of the effect of nonlinearity) 
against u./c for various wave slopes 0. 

details the reader is referred to VDJ. In figure 1 the dependence of the parameter p on 
u,/c is sketched for various wave slopes (i. We deduce that the effect of nonlinearity 
increases with the wave slope and the wavelength. For high-frequency waves, nonlinear 
effects become noticeable for a wave slope exceeding 0.2, say. For lower frequencies, 
on the other hand, these effects become noticeable for smaller wave slope. 

Equation (6.8) has a solution determined from 

(6.12) 

with 0 = go at t = 0. As expected, nonlinearity increases the transition time from 
the initial wave slope CJ = 00 to the occurrence of wave breaking. This is illustrated 
in figure 2, where the evolution with time of the wave slope is sketched for 00 = 0.1, 
E = 0.04 and various co. The results are compared with those of linear theory. 

7. The growth-rate parameter and the drag coefficient 
The growth-rate parameter 0 is defined by 

2 a a / d t  
p = -  -, I co I a 

which corresponds to the energy growth rate per radian (Miles 1957). 
When expressed in terms of the wave slope, equation (6.6) implies that 

In VDJ, and also in Jacobs (1987), the reference height for the wind speed was 
chosen to be l / k ,  which corresponds to a = 1 in (2.5). The expression (7.2) for the 
growth rate, on the other hand, is based on a value of 2 given by (6.5). According to 
Miles (1993), however, the parameter GI should have the prescribed value GI = 0.281, 
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FIGURE 2. The evolution with time of the wave slope o for various dimensionless phase speeds 
CO; oo = 0.1, E = 0.04. Solid lines: nonlinear theory; dashed lines: linear theory. 

which leads to a slightly different magnitude of the growth rate. However, we found 
that a is a free parameter of the order of unity. This discrepancy can be resolved as 
follows. From (2.5) and (2.6) it is found that E = &(a) and c = c(a), where c is the 
dimensionless phase velocity. From equation (6.3) we obtain 

2srCwc: p=- + O(se2), 
c l c l  

(7.3) 

where E = &(a) and c = c(a), with arbitrary a. However, since ~ ( 1 )  and E are the 
same at leading order (which applies to c(1) and c as well), the difference between 
the results for a = 1 and a # 1 is absorbed into the remainder term in the expression 
(7.3) for p.  

Expression (7.2) shows that the growth rate decreases with increasing wave slope, 
which implies that nonlinearity has a stabilizing effect. However, for a wave slope of 
the order of 0.1 this effect is rather small for high-frequency waves. 

The validity of the analysis is retricted to slow waves because of the condition 

with w = (V - c ) / V ,  where c is the dimensional phase velocity (VDJ). 
The (actual) wind speed v at elevation z = z1 in the laboratory frame (scaled by 

the wind speed V ,  defined by (2.5)) is obtained from (4.8) and (4.13). In terms of the 
wave slope we find, with a given by (6.5), 

1 K W d  
V(Z1) = 1 + - log (5) - -, fJ = O(&). 

K a & 

The (actual) drag coefficient cd is defined by 

(7.5) 

c, = ( U * / V * ) 2 ,  V* = vv, 
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FIGURE 3. The growth-rate parameter (7.2) against UA/c (solid line), compared with the numerical 
results of Burgers & Makin (dots); IC = 0.4, s = 0.0013, E = 0.04, (T = 0.1. Dashed line: linear theory. 

where I/, is the dimensional wind speed at z = zl. Combining (7.5) and (7.6) we 
obtain 

Cd(Z1) = E2 { 1 + E K log (2) a - &J: & 
(7.7) 

The parameter F: corresponds to the square root of the drag coefficient Cdf(a) for a 
flat water surface. Then (7.7) implies that the presence of a wave with phase speed 
smaller than the wind speed (q, < 1) increases the drag coefficient according to 

In figures 3 and 4 the growth-rate parameter (7.2) and the drag coefficient (7.7) are 
compared with the nonlinear, numerical results obtained by Burgers & Makin (1993). 
These authors used the same turbulence model. For comparison with their results we 
should take K = 0.4,s = 0.0013, E = 0.041 and c = 0.1. 

In figure 3 the growth-rate parameter (7.2), represented by a solid line, is sketched 
for various U,/C,  where U, is the wind speed at an elevation of one wavelength, and C 
is the dimensional phase velocity. The numerical results of Burgers & Makin are repre- 
sented by dots. For large U,/C, corresponding to high-frequency waves, the agreement 
with the numerical results is quite favourable. As expected on the basis of condition 
(7.4) for the validity of the analysis, the agreement rapidly worsens for smaller U,/C. 
The growth-rate parameter for the linear theory is represented by a dashed line. 

In figure 4 the drag coefficient at elevation z = 1, obtained from (7.7) with z1 = 27c, 
and represented by a solid line, is sketched for various U,/C. From a comparison 
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FIGURE 4. The drag coefficient (7.7), at elevation z = 1, against U i / c  (solid line), compared with 
the numerical results of Burgers & Makin (dots); K = 0.4, s = 0.0013, E = 0.04, CJ = 0.1. 

with the numerical results of Burgers & Makin (represented by dots) we again find 
that the agreement is quite satisfactory for high-freqency waves. 

8. Discussion of the results 
The principal purpose of the present study was to investigate analytically the effect 

of nonlinearity on the generation of surface gravity waves by wind. In particular, 
we attempted to solve an initial-value problem for weakly nonlinear waves, where 
the initial conditions are prescribed by a single Stokes wave. The initial wave slope 
should be of the order of E,  where the small parameter E corresponds to the square 
root of a characteristic drag coefficient. 

The dynamics of the process of wave generation is governed by an evolution 
equation for the wave slope, obtained from the continuity condition for the normal 
stress at the air-water interface. The solution of this equation, which describes 
the change of the mean air flow with the growing or decaying wave, is uniquely 
determined by the initial wave slope. 

Initially, and for sufficiently small wave slope, the evolution equation is approx- 
imately a Landau equation, which has an exact solution. In the course of time, 
however, the amplitude of the growing wave becomes so large that the latter equa- 
tion, which is a truncation of the full evolution equation, ceases to be valid. This 
implies that its validity is restricted to sufficiently small time scales as well. By 
introduction of a suitable scale transformation, however, we derived an alternative 
evolution equation, which is valid for larger wave slope and larger time scales than the 



Generation of’ nonlinear surface gravity waves 303 

original Landau equation, and presumably describes the further evolution of the wave 
until the occurrence of wave breaking. Based on the alternative equation, we found 
that the relative effect of nonlinearity can be characterized by a single parameter, 
which contains the wave slope and the characteristic drag coefficient only. It turns out 
that this effect increases with increasing wave slope and decreasing wave frequency. 

Based on the evolution equation we also derived a closed-form expression for the 
growth-rate parameter, which depends on the wave slope. It turns out that the wave 
growth rate decreases with increasing wave slope, which implies that nonlinearity 
reduces the rate of energy transfer from the mean air flow to the growing wave. 
The mean air flow decreases with increasing wave slope, which is consistent with 
energetic aspects of the mechanism of wave-mean flow interaction. Nonlinearity has 
a stabilizing effect, in agreement with results previously obtained by Fabrikant (1976) 
and Janssen (1982). 

For a wave slope of the order of 0.1 the effect of nonlinearity on the growth rate of 
high-frequency waves is only small. For larger wave slope, of the order of 0.2 say, this 
effect becomes noticeable, especially for waves of lower frequency. The same applies 
to the effect of nonlinearity on the drag coefficient. This may differ considerably from 
the drag coefficient for flow over a flat water surface. 

The validity of the present analysis is restricted to small phase speed and small 
characteristic drag coefficient. This was verified and confirmed by Jenkins (1992), 
who numerically solved the physically similar, linear problem of Jacobs (1987). The 
expression for the growth rate, obtained by the latter author on the basis of an asymp- 
totic analysis, is the same as our expression in the limit of vanishing wave slope. The 
calculations of Jenkins imply that our result for the growth rate is generally smaller 
than his numerical result. However, the difference is small if the above restrictions 
are satisfied, in agreement with the asymptotic nature of the present analysis. 

To some extent, this also explains why our result for the growth rate is generally 
smaller than the numerical result obtained by Burgers & Makin (1993), based on 
nonlinear calculations. This is especially the case for large phase speed. Within the 
above limitations, however, the agreement is favourable. The same applies when our 
expression for the drag coefficient is compared with the result of Burgers & Makin. 

To describe the direct effects of turbulence, we introduced an eddy viscosity model, 
applied throughout the flow. I t  is expected that the incorporation of a physically 
more ‘realistic’ turbulence model (which has been, however, rather hypothetical up 
to now) will again lead to the rather straightforward calculations needed to solve 
the problem, because the methods applied remain the same. In this respect, it is 
also important to note that the lower-order solutions are independent of any closure 
assumptions, as was already found by Sykes (1980). Although we realize that some 
of the quantitative results will be different for a more realistic turbulence model, it is 
hoped that the principal results will not be affected significantly. 

The author wishes to thank Peter Janssen for valuable discussions and useful 
comments on drafts of this paper. 
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